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Abstract—An exact analytical solution within the linear framework is developed for the transient
dynamic impact response of a two-end simply supported cylindrical shell of finite length, The
solution obtained is shown to consist of a remarkably simple analytical expression. Several examples
of impact loadings are calculated. The results show excellent agreement with those of the computer

code ABAQUS.
NOTATION
A coetlicient matrix of governing equations
a, and ¢, coctficients of Fourier serics
a, (i =1.3) clements of matrix A
h(i=19 coeflicients of expansion of polynomial

E " I .
¢ = [ el T stress wave velocity in material

(1=v)p

D,. DN, membrane stiffness and bending stifTness, respectively
L unit matrix
Ev Young's modulus ind Poisson’s ratio, respectively
W.h thickness of shell
! peak impulse intensity per unit area

fe(l =v7) di ¥ s meak i s intensity per unit ares

= et imensionless peak impulse intensity per unit arca
Eh

ky kaky o, 2y dimensionless frequencies
l length of cylindrical shell
mon Fourier series parameters
M, axial bending moment component
M, circumferential bending moment component
N, axial membrane foree component
N, circumferential membrane force component
r.p distributed load
R radius of cylindrical shell
s Laplace transtorm parameter
' time variable
u.u axial displacement of the middle surface
v.or circumferential displucement of the middle surface
W, w radial displacement of the middle surface
x Bz axial, circumferential and radial coordinates. respectively
P density of material
al axial stresses at inner and outer surfaces of shell
a; circumferential stresses at inner and outer surfaces of shell
gt dimensionless axial stresses
g dimensionless circumferential stresses

(¥ . . . .
T = dimensionless time variable

R
T, dimensionless time duration of impulse
i, = 'L’.l'ff Fourier series parameter.

t Permanent address: Department of Applied Mcechanics. Beijing Institute of Technology, P.O. Box 327,
Beijing, China.
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1. INTRODUCTION

In recent years, concern has been expressed regarding the dynamic response analysis
of structures sustaining impact loading. Cylindrical shells. as a type of important engineering
structure. have been extensively investigated. In retrospect. some analytical solutions of the
transient dynamic response of cylinders were obtained in the 60s and early 70s (Humphreys
and Winter, 1965; Pawlik and Reismann. 1973). Since then, due to the rapid develop-
ment of numerical techniques it seems that little progress has been achieved in the ana-
lytical solution of this problem. Although numerical techniques are efficient and can be
used to solve various complex dynamic response problems of structures, they need large
computing power and the computer running time may be such as to make it unacceptable
for small capacity computers. Hence. it is desirable to obtain efficient and simple exact
solutions for these kinds of impact response problems.

In problems of transient dynamic response of thin-walled cylindrical shells. three
approximate shell theories have been commonly used (Reismann and Pawlik, 1968): (a)
membrane theory ; (b) combined membrane and bending theory and (c) improved theory
(including shear deformation and rotation inertia). The analysis is limited to the solution
of partial differential equations with only two independent variables : the angular coordinate
f and time ¢. For the membrane theory, the circumferential stress is assumed to be constant
throughout the thickness of the shell and therefore bending moments vanish. Travelling
wave solutions for membrane stresses were presented in some published papers (Payton,
1961 ; Forrestal and Alzheimer, 1969).

The combined membrane and bending shell theory (Fliigge, 1962) uses the Kirchhofl
hypothesis and allows for variation of the curcumferential stress throughout the thickness
of the shell, resulting in bending moments as well as membrane forees. A solution for both
membrane and bending stresses based on this theory was presented by Humphreys and
Winter (1965). In the improved theory, straight-line clements originally normal to the
median surface are allowed to rotate, and a new parameter is introduced to account for the
cffect of transverse shear deformation. The improved theory, which is the best of the
aforementioned three, accounts for membrane forees, bending moments, transverse shear
deformation and the effects of rotatory inertia (Herrmann and Mirsky, 1957 ; Goodicr and
Mclvor, 1962, 1964). 1t can be reduced to the combined membrane and bending theory if
rotatory tnertia and transverse shear deformation effects are neglected.

All these two-dimensional thin cylindrical shell theories are approximate. Although
they have the advantage of simplicity, they suffer from one major disadvantage : they ignore
the surface traction on the two ends of the shell so that they cannot be applied to shells of
finite length.

In this paper, an exact analytical solution is presented for the transient dynamic
response of a thin-walled, clastic, cylindrical shell of finite length under transverse impact
loading. The solution of partial differential equations, based on the Kirchhofl hypothesis,
contains three independent variables : the axial coordinate x, the circumferential coordinate
ff and time T. The general solutions for displacements and membrane and bending stresses
are presented in closed form as a double trigonometric series. Two cases of impulsive
loading are calculated. In the first example, the loading is assumed to be a rectangular
impulse distributed over half the shell circumference along the shell length. In addition, the
transient dynamic response of a cylindrical shell subjected to lateral, localized, distributed
impact loading is considered in the last example. Comparison of the present results with
the results of Humphreys and Winter (1965) and the computer code ABAQUS (Hibbitt et
al., 1988) show cxcellent agreement,

2. OUTLINE OF METHOD OF ANALYSIS

Consider a thin-walled circular cylindrical shell of finite length made of an isotropic,
linearly elastic material. Tt is simply supported along the edges x =0 and x =/ and
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subjected to transverse impulsive loading. The shell is referred to as a right-hand system of
orthogonal, curvilinear coordinates x, § and - which represent the axial coordinate,
circumferential coordinate and the coordinate perpendicular to the middle surface of the
shell (Fig. 1), respectively. To simplify later derivations. we first introduce the following
dimensionless variables

U L .
u“R- '-—'R. W= R. ."—E
h (1-vHR ct E
’=~‘ = p = = —_— 5 1
"R " TEw TERTRV 1= M

where the prime (') denotes the actual variable. By adding the inertia terms, the dimen-
sionless forms of the governing equations (Timoshenko and Woinosky-Krieger, 1959, pp.
522-523) are

a? . l—v &* + l+v ¢ vc’w . ,
ax? 2 Of “*r 3 oxép ox “ (2
l+v Ju 0° + l—v 0° Mw 3
2 axap T \opr T 2 ) T )
du Qv W, .
Vax Fop T V= ™

where

. 02 02 2
Vi=lrs+—=
(Oxz + o/r-)
and the dots denote differentiation with respect to time t.
We assume that the two ends of the cylindrical shell are simply-supported, so the
corresponding boundary conditions and initial conditions can be written as follows :
eow . N M) oo =0, (,6,4)],.9 =0
(oW, N M)y =0, (ue,w).o =0. (5)

Fig. I. Geometry of a cylindrical shell associated with Cartesian coordinates.
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The boundary conditions suggest the use of the Fourier transform. So, we define

(IR

2R
¢ (m,B.7) = 7 ), u(x, B.1)cos Ax dx
2R "I R
d.(m. B, 1) = T v(x, f.1) sin 4,xdx
U
2R ('*
¢s(m.B,.1)= T w(x, B.7) sin i, xdx
J0
2R CI R
¢s(m, B, 1) = T p(x,B.1) sin 4, xdx 6)
JU
where
P mnR
=~
then

u(x,p.t) = i &\ (m, . 1) cos A,x

*

u(x.fory =Y ¢a(m, f.7)sin A,x

m=|

wix, fl.7) = Z $(m, fi.1) sin 4,
= |

I's

px.ft) =Y pa(m flv)sin 4, .x. 7

m—i
With further expansion of the coeflicients of the above serics with respect to fi, let

n

Uln,m,t) = % J by(m, f.rycosnfdf
2 (" .

Vin,m, 1) = - f $a(m, 1) sinnfdff
2 n

Win,m, ) = - J Gs(m, . t)cosnpdp

4 ['n
P(n,nm, 1) = ;-z J $i(m, B,7v) cos nfidp. (8)
1]

Finally, the three displacement components u, ¢, w and distributed load p, can be expressed
in double trigonometric series form, respectively

k9 £

ux,f,0) =Y Y U(n m,t)cos i,xcos nfi

mal nel

v(x.p.r) =Y ): V(n,m,t) sin A,x sin nf§
mu | n=t}

K x,

w(x, 1) = Z Z W(n.,m, ) sin 4,.x cos nf}

mal n=0

plx.f.r) =3 Y Pln.mr)sin i,xcosnf. 9)

m=1 n=0
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One can thus prove that eqn (9) satisfies the boundary conditions (5).
Substituting eqn (9) into the dimensionless governing eqn (4), we get

AW = W,—P. (10)

Here, the boldfaced letters denote the bmatrices

a,, a;: a; U 0
A=lay an an) W={V] P={0
A3y dix A3y 114 P

where the elements of matrix A are

ay = —~ii=1=vn*: a;,=i1+v)ni,; A= —Vviy,
az; = az; ap=—n={1-v)i.: an=n
3y = dyye Qi = dast Az = ~§-‘-l—2{n"+22§n3+£2).
(i)
The gencral solution (see the Appendix) of eqn (10} is given by
(" Th by . b i
U= Lsink(t—5)+ sinky(t—5)+ L sin ky(t—s) |P(s) ds
Jo Lk k, ky .
B by . i
V= ,-\;3» sink (t-s)+ b" sinky(t—s)+ ,:" sin ky(r—») |P(s) ds
FUBN W4l | 2 X .
[y by . by . ]
W= {sm kfr—=s}+ i sinka{t—s)+ i sin ki{t—5) |P(s) ds, (12)
JU LM 2 3 =

where b, (f = 1,9) and &, (f = 1,2,3) arc given in the Appendix. In addition, for axisym-
metric conditions when # = 0, eqn (10) can be reduced to the following form

il4s? Vi, (7,,) _ ( 0 )
- ﬁl 4 3 (WI} - 35{} ) (§3)
Vim I+ E}*m""é'-

By meuns of the Laplace inverse integral transform, we obtain

J" vh,, [sin ax(t~s) sina,(t—5)
Uu = e -
v @

[+ 3} [«

]P(s) ds

N D O . W SO
Wo—j;[ o1, in o {t—s)— O sin o, (t s)]P(;)ds

Vﬁ = 09 (}4)

._' 2 ! 2"4) | 4 2 232 l 234,32 l 4 &}“2
-2(t+z.,+ A )+ 5| G2 - ) 480 8 = SR = )+ A

2 ‘ 32 l 254 l 32 2 292 1 24+4 2 ‘ 438 e
a3 —2(l+4,.,+ i«z«h /.,.,)~§[(4,,,-—I) + 4y ).,,,-—-éh a1} + mh Ao

i

i 43
2ed032 hiak
61: MOLERE SR 144 t A,,,] .

Q=ai-ai= ~—[(£3.— 1) 4+4aviil~
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Finally, the displacements are obtained in terms of the series defined in eqns (9). Therefore,
the generalized forces, i.e. the membrane forces and the bending moments, can easily be
obtained from the associated force-displacement relations

Cu v
R E
N, =D, l:(g—;; —-w>+vg;:|

3w w
Ml = —Dz(axz +Vaﬂz)

Pw  w
M,=-D, W*'V‘a?), (15)
where
En En’?
bi=i D=y (16)

arc the membrane stiffness and bending stiffness of the shell, respectively. The stresses in
the shell at the outer and inner surfaces can be obtained by substituting eqn (15) into

N, 6M,
Oylm iz = i o
N, oM
Oalic iy = ‘h‘,: + _h__’_z_z_‘ 17)

yielding

1 - 2 I 0 } R , .
__E_‘i_a,h_t,,,: = Z Z {—/‘.,,,U+vnV— [v-‘;—'il(}.‘+vn')]W}cosn[ism A X
1

na me

,
l—v° < 2

. h
ra Oalimsna =Y Y {-—v).,,,U+nV—|:l F i(vﬂ-&-n’)]W} cos nf sin 4,,x.
1

n=0 m=

(18)

3. EXAMPLES

3.1. Example A
Consider the case when the shell sustains a rectangular pressure impulse of duration

t, distributed as shown in Fig. 2. The analytical expression of the loading is

n
pocosf, O0<t1<t,—5<f<

5 ,0<x<!;

n
P(ef) = 2 ' (19)
0, otherwise.
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P P p
po ! po : P
T, T 0 [ x -z I i B

Fig. 2. Impact loading us a function of time and position (Example A).

Defining a dimensionless impulse per unit area

_feli=v)

Ev P

where

o , ct (1—-v3)R |
I=J; podt = pit,. 1'1=‘k‘|'- I’o='T[’o-

and the wave speed

Sy
TN =)

Then, the dimensionless transformed form of loading is

n n
t(:os/f. —,Shs,. 05yl 0ty
1 - A

plx.p. 1) = (20)

in which

A 1,
cos /; = Z Z a,c,, €Os "ﬂ Siﬂ;.,,,.\'

n=0 m=|
where the Fourier series cocflicients are given by

a.,—n~. a, =3
(= 1)?
) = e o n=2,4,0 .
a, = a(n-—1)
0. n=305,...
_ ). m=13....
Cn = T

0, m=24, . ...

Now, combining eqn (12) and eqn (14) and integrating. we can obtain the displacement
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response results. Fort < ¢

v Tagc,vi,, (l —~cosx;t 1 —cos 1.r>
ro= > 2t

1,0

5
%3 x

i m—:sr_ i .'rir_ s
0 = ::’é _/ 1;'(l—coszlr)—, 1;'(1—coszzr)
'm —h b’ h‘
U=ia,,c —',(l—cosk.r)+—:(l—cosk3r)+ < (1 —cosk;,1)
T, Lk; k3 k3
[ b b
V= fa,c, h—f(l—cosk,r)+ (1 =cos k.t)+ — (I —cosk,1)
7, LA} ks ki
Ia,c, [ by
W= 7 cosk,)+ 73 (1 —cos k; O+ 22 (L—cosk,) | @)
T, I\l 3 k3
For t 2 1, the response is given by
i(l“( m"m
U, = 0 (521 cos 21+ 8,; sin%,t) — (S, cos %, t+ 5, sin x,7)]
) fu(.(,,, s v e :
W, =- Q [(Gm = xS cos 0, T+ 85 sin 2, 1) — (A3 —ai)(S), cos a1+ S, sin a,7)]

U = la,c,[b(J,, cosk,t+J,ysink,t)+h,(S,, cosk,t+J,, sin k1)
+h|(-"| COS I\"\t+~l}2 Sin /\'_‘T)]
V = Tu,c[ps(J cos k T+ J1y sink 1) +bg(Js, cos kyt+J4, sin k1)

+bho(Jy, cos kyt+J5, sin k1))
W= lu,c,[b,(J), cosk,t+J,, sink,t)+b,(J;, cos k,t+J1, sin k1)

+bhy(Jy cos kyt+Jy,sink,1)), (22)

where

coso, 1, — | cos k7 —1
S/I s M Jtl =" I\
2T, Ty
sina, 1, sin &, Ty .
S, = 2t =12 Jy= (i=1,2.3).
' o7, ( ) - kit
Now we can define
ho, s
SEurnyan) = —dyyitvnyr—vyk 5 (A +nd)y,

SE L yayan) = —vi,y +ny. -yt (w +n%)y, (23)
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then. the stress responses, after the impact has vanished, i.e. for 1 > 1, (the region of most
interest for short pulses), are

4 hd . »
= Z "—7——{mvi.,;[(s;;C0513t+33251n1;r)m(5”COSC!;T.‘-}—S.:M“C([!‘)}
S,
,,,,h.1 . - .
- v+§/.,;, [tam—2)(S  cos 2t + 8- sinx;1)

— {45 =238 cos x;t+ S+, sin z:r)}} sin 4,.x

T

| .
Y - [FED b 1 cosk i+, 8in k1)
m= i3

+

ot

+f|t (b:,b_s.hx. ')+(‘l‘.'l COSI\':I+J3: Sink:f)

+ [ (hrbobo. WUy, cos kit + 7y, sin k1)) cos Bsin d,x

-3 Z Z (- ______ {fl (hhbi b?cn}(‘,]g Cogi;t'{’“lgv Sfﬂ k}f)
[N

R .3 i Eh m{n
+ f by b by n) (S cos byt + 0,5y sin k,T)

+ i b by YTy cosky+J s sink ) cosnfisin 4, x. : 24)

h :
=, Ggf:- (3.4

I

N
tory

4 & 1
= -y Z mQ{ viAL[(Ss €OS ayt+ 82y sin 25t) = (S;, €OS &, T+ 5,1 sin &, 7)]

n ma i3

R .
—(l ¥ ,,\'/.,:,)[(A,:,-—a;)(s,, Cos 2,145, sin2,1)

— (2 ~23)(S; cos 2,7+ Sy, sin 2:?)}} sin A,

2 05 .

+¥‘£ z ;;é{j;t(b;.!h«&?.i){f;;COi‘;k;!'{'j;:Slnk;f}
e §,08,0

+ 5 (by. bs. by Y+ (T, cOS k14T 8ink,1)

+ bbby, 3 coskyt+ i sink t)lcos fsin A x

8 * nid
-y Z ) (‘““—)“‘“‘ [f‘(bt.ba.by.n)(./,, cos k,t+J,; sin k1)

R e Th main m(n
+f:: (h:,b;,bx. n)(.,“ COs i\':t +J:: Sin k:f)
+ [ by, bo bo.n)(Jy cos kst 45, sin k1)) cos nff sin d,.x. (25

Considering the limiting conditions in which the impulse remains constant while its duration
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of action approaches zero, eqn (24) and eqn (25) become

. 4 & 1 sinx.T  sinxt
of =—3 Z _— —V/.,,, -
... mQ -5 x

m=13 . 2
_h . A A SinxyT o LosinaaT L.
—{vF 4y )l (An—27) —(An—13) sin 4,X
2 X X2
2 1 smk ST
+ - Z [fl (h). by b, l)*———+f.(h bs. b 1)
m=1.3,." .,
nk,t
+ [T (by.by. b, l)S' ]cos Bsin i,x
3
8§ Z d (-n? smlx.r
- F n-;. . m=lz_.‘m "‘(": I:fl (b bJ b7‘”) l
mlx LT .
+ft b, 1) ]cos nfisin i,x. (26)
4 = l sinx.t  sina,t
=t SR SRS T dtaet-b el
7 n* mslz.l.... mQ { ' /.,,.( Xy x4y )
I/ St sina,
- (l I ': m) {(,ro: - :) \l"" 1":{ —(;'IEI —1§) s"“':z.'t]} si" ].,,,.\'
4 % 3]
2 < | n A T sink,t
+° X [/ (hrobachs 1) 00 fE (b byabyl) 22
n meadt m | ,\1
. sin k,t ..
+ bbby ) o cos fisini,x
1]
g8 & d (-n": smk,r
2L LT L2t
nk,t ink,t
+ fE(hrbs. by n) VI: 4 (b1 b by, n) ~/\- cos nffsin 4,,x. 27
2 3

3.2. Example B

In this example, the impulsive loading is suddenly applied inward over a small area
x, € x € x,inthe axial direction, and — 8, < f# € B, in the circumferential direction of the
outer surface of the shell. The load is assumed to be constant within the time duration
0 <€t < 1, and vanish when ¢ > ¢, (Fig. 3), which can be expressed as

0<tgt, vy Sy <X, —flos <P

5
otherwise. (28)

P fn = {"

Using the same convention as in Example A, the dimensionless transformed form of loading
is

€Ly, ~fo<B<Pr0gT <1y

otherwise. (29)

p(x.f.1) = {p"
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P P P

]

R L)

R fpo——-
oY I,

2 | x S

Fig. 3. Impact loading as a function of time and position (Example B).

T, T ol x

where

Do = I Y Y acacosnfsin d,x.

Tt paOm=t

The coeflicients for the double Fourier series expansion for p(x, B, t) are given by

0
Ay = —
11
2
a,,=’;smnﬂ‘, (n=1223,..),
4  x+x, X=X,
c,,,—;;tsm——j—m sin 57 mn (m=123..).
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Then, following the same procedures described in Example A, the stress responses when

0<t<rt arc

. 44, i | (x,+x2) sin (xz—x,>mn{ vi? (I—cos ot | —cos a,t)
Gf = -~ - §iN o= Jmmsin | == e - -
ST e mQ 2 2 o o

J 2
_(Vx { )[(4,;_a')_j£; i“JE _(l-_a‘) Csas—-a.t:]} Sin A,"x

2 : H
8 z fod Sinﬂﬁn . X+ X, . (.\'z —x|)
RSO D M S'"( 2l )""‘ ST )™
cos k|t —cosk,t
x [flt(hl'hvhbhn)_—’i‘ I ft(bhbs,b“.n)'“—‘i“—z-'
1 2
—~cos k;t .
+ /& (b be-bo-") px cos nfi sin A,x.
3

(30)

- 4, hd | x,+x2) . <x2-x,) (I—cosazt l—-cosa,r)
= 0 _ —y2}2 -
o= ., O ""( 2 )"\ ) T T 2l

1 2

< = sinaf X +x;3 X3
+=— Y ¥ s":n';/osin (V';r‘)mnsin(vzy")mn

_h . ,. I —cosazt I —cosast || .
- (I F iw.;,) [(i.,;, —a3 al——l— — (A —ad) -———a-z———]} sin A,,.x

—cos kt —cosk,t
[f (b1.be.br.n) ————i— +f§ (b2, bs. by n)——F—’—
| 2
. | —cosk,t .
+f3 (b, be.bo. 1) % cos nf sin A, x.
3

3D
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For t > t,. the stress responses are

G

-+

ai

2 2

4 < ' (x,+x, . [xi—Xx .
= ﬁ," Z ——sm( ' ’)mnsm(v' l)mn{—wl,;,[(S:, COS &7

T naicy. mQ

+Sia8in 2:1) — (5, cos 2, T+ S sin x,1)]

L .
_("i~ 3 /;’) [(/.,;,—1?)(5” COs 1lt+sl1 sin Ilf)

— {Am —23)(S3; €Os 2,7+ S5, sin 1:t)]} sin 4,,x

s < sinaf, . [x;+x; L fx—x,
+ — Z Z sm( 37 )mnsm( 37 )mn
x{_/‘lt(hl.h,;.h'y.")(‘]”c05k|r+.,|:§ink1r)

+ fi(hs b by m)(J; cos kst +J;; sin ka1)
+ [t (D be by.n) (Jyy cos kit +J 1 sink,t)] cos nf sin 4, x.

4/ = 1 fx,+x, . [x;—x v s
= Z ~—— sin <~—!—;’,—'~) mm sin (4-57—J> nm{—v%,:,[(sn COS X5t

n m 1,23, "‘Q

+ 8. sin2,1) — (S, cos 2 T+ S, sin 2,1)]

3

ho cr g .
—(I ¥, v/.,:.)[(/..:,—a:)(Su cos T+ .5y, sin2,7)

— (A —a) (S, cos 2.7+ S, sin flzt)]} sin 4,

8 ‘ = osinafy, . (xi+x; L xrmxy
+ o Y Z‘ o STy, Jmmsin{ = = Jmm

X [/it (h.,hh I)-,,H)(.I” cos I\'|T+le Sin k|t)
+fgt (h_\_.h;.hg. ")(.I“ Cos k;T+J:z sin k:f)
+ S5 (b3 bo bo.) (S5, cOs kT +J5, sin k1) cos nft sin 4, x,

where S, (i, j=1,2)and J;, (i = 1, 2, j =1, 2, 3) are same as for eqn (22).

4. DISCUSSION

(32)

(33)

By systcmatically changing parameters, the axial stress of and the circumferential
stress af for all given values can be computed. The terms of the double series have been
summed to #n = 100, m = 101 for time t < 4r at position x = 0.5, # = 0 for the parameter
values /=2, 5, 10, 20 and 4 = 0.01, 0.05 and impact duration r, = 0. Figures 4-5 show
the results of the calculations.
The cffect of the length is illustrated in Figs 4a—4d for the case of a thin-walled cylinder
of h = 0.01, subjected to a pure impulsc of very short duration (r, = 0). The stresses have
been calculated at the mid-span (x = 0.5, # =0). For a long shell, with / = 20, there is
good agrecment between the present results and those of Humphreys and Winter (1965).
obtained assuming that there was no variation in the state of stress with axial position. This
condition corresponds to o, = 0. As the cylinder becomes shorter, the overall stress~time
response changes and small wavelength oscillations are superimposed on to the lower
frequency variation. The effect is particularly pronounced for the axial stresses and is
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Fig. 6. SRS shell element of ABAQUS.

ascribed to the stress wave reflections at the ends. Ignoring the end effects, a short shell
(/ = 2) would grossly underestimate the values of the stress, since axial stresses ranging
between — | and + | become predominant over hoop stresses ranging from —0.75to +0.5
(Humphreys and Winter, 1965).

The effect of thickness is illustrated in Fig. 5. There are obvious bending effects in the
stress—time history, the thicker the shell, the higher the amplitudes of stresses.

Example B has been calculated for a cylindrical shell with a thickness ratio of 0.01 and
length-to-radius ratio of 5. The load was applied over a rectangular pad defined by x, = 0.4,
x;=0.6 and B, = 15° (see Fig. 3). For comparison. the problem was also solved using
ABAQUS, employing 24010 x 24] SIRS shell elements, as plotted in Fig. 6. The deformed
shape is shown in Fig. 7. Figures 8 and 9 show the variation of dimensionless stresses with
position. The terms of the double trigonometric series have been summed to n = 100 and
m = 100. There is excellent agreement between ABAQUS and the present solution.

The double trigonometric series finds its merit to treat boundary condition problems,
despite that it is not monotonically convergent. The convergence of the double trigonometric
serics employed was studicd by taking up to 5000 x 5000 terms. It was found that cach
result oscillated about a mean value and that the amplitude of oscillation decreased with
the number of terms in the serics but depended on the position of stress that was being
calculated, and on the type of loading. In addition, the axial stress always oscillates more
scriously than the circumferential stress because of the traction on the two ends. Typically,
in the second problem at the center of loading where x = 0.5 and f# = 0, taking between
30 x 30 and 60 x 60 terms gave an amplitude of oscillation of +3.5% above the average for
the axial stress and +£2.1% for the circumferential stress; taking between 100 x 100 and
120 x 120 terms reduced the amplitude to +0.25% for the axial stress and +0.15% for the
circumferential stress. In either case, the difference between the average results was less
than 2%. The solution of the second example wus obtained with 100 x 100 terms which
requires 70 min CPU on a Micro-VAX Il computer, against more than 5 hours CPU for
the ABAQUS run. If only the responsc of a fixed position at a fixed time is needed, the
CPU involved is only of the order of tens of seconds.

5. CONCLUSIONS

The exact solution of the elastic transient response of a cylindrical shell subject to a
transverse impact loading has been obtained in closed form. The treatment is valid for a

Fig. 7. Mesh of one-quarter of the model in Example B.
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cylinder of any length, with simply supported ends and is therefore an improvement over
other published theoretical solutions, which are only valid for infinitely long cylinders. The
effect of the proximity of the ends is particularly important in building up high axial stress
that may result in failure. In both the examples that have been treated, very high bending
stresses have been obtained. The results have been shown to be in excellent agreement with
ABAQUS.
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APPENDIX

We make use of the Laplace transform technigue to solve the simultancous differential eqns (10) by defining
O() = J:, ¢ "Uln,m. 1) dt
Ps) = J;‘ e "“V(n,m, 1)dt
W) = J:b e " W(n,m, 1) dt

Py = J;' ¢ " P(n,m, 1) dr. 34)

Then the differential equation can be trunsformed into a linear algebraic system of simultancous equations, when

nzl

(A=sEYW = —P(s) 35)

where E is un order three unit matrix. The algebraic solutions of eqn (35) are

b, by b,
= A A = = - £
0 =448 (s:+k;'+.v’+k§+s’+k€>P(‘)
bJ hj ,’h
F=0./8= (_+T tEemat .;m:‘;)’ (=)
b,y by hy
"= AL /A = s | B(5). 6
W= 84/8 (x’+ki MY +.c-+k;)P(‘) ©36)

where

A =|A=5E| = (s* +k)) (s +ED T+, 37N
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We can see that it will be convenient to obtain the inverse Laplace transform by expressing A,/A. A,/A and A,/A
in the form containing b,/(s° +k}), b./(s* +k3) and b,/(s>+k3). etc. If we denote | | as the relevant value of the
determinant, then a series of coefficients appearing in eqn (36) are listed below

0 a,; a,3 a4, —s* 0 a;, an—s  a, 0
Ac=| 0 a,—s’ ayy Av=| ay 0 as, Ay =| ay a.,~s* 0
—P(s) as au"-‘: ay, _P(s) U”—'S: ay, ay, —P(S)

and &7 (i = 1, 2. 3) are obtained by cubic root formulae [from eqn (37)]

kf:%—'+2\y;cos(}

129 s 2
ki = 3 +2 rcos(0+3n)
291 9 4
ki = 3 +2 rcos(0+3n).

where
1
2r

27!1?—!1‘:1; =g:-

r==(3):0= ;cos“(—

| §
lh=399: 55 5.4?

g, = —(a, +d:+dy)
G =d @y ddgdyFaad) —(dy 2y F a0+ aayy)
Gy = Uy a sy + a0y sy = (st Ayl gl + a4y lnays).

The coeflicients b, (i = 1,2,...,9) arc obtained by finding the solution of lincar algebraic cquations of the
manipulations of the polynomials in egn (36), hence we have

h =4/4, (i=12....9),

where
| | { 0 I |
By =ki+k] ki+ki ki+ki[ A= ayy ki+ki ki+ki
kik; kik; kik3 Ay ~dyyy  kik3 kik3
| 0 t t | 0
Ay = kisvki] dyy ki+ki Ay =kitki ki+ki dyy
kik3 dyathyy =gty kik; kik3 kik3 dyrdyy—dyyly
0 I ] 1 0 |
A= dzy k,z+ki /\'f+k§ A= /s‘::ki ay /\‘}'+k::
gy —dydyy kik} kiki kik3 dypdyy —dydyy klzki
| { 0 1 1 |
Ay = [kivk} ki+k3 dyy By =| —(a +as)  ki+k] ki+kd
k3k3 kY ayay—agas, dpdy—dsay,  kik? k3k3
| I { | ] |
By = (ki+ki —(ayt+ay)  ki+ki Ao = |ki+k] ki+ki —(ay+ay)
kiki  apay—aayn kiki kiki kiki  ayasn—agay

So, inverting eqn (36). the general solution can be expressed as eqn (12).




